Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Oncol Lett ; 27(4): 176, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38464338

RESUMEN

Glioblastoma (GBM) is one of the most common types of brain tumor in adults. Despite the availability of treatments for this disease, GBM remains one of the most lethal and difficult types of tumors to treat, and thus, a majority of patients die within 2 years of diagnosis. Infection with Zika virus (ZIKV) inhibits cell proliferation and induces apoptosis, particularly in developing neuronal cells, and thus could potentially be considered an alternative for GBM treatment. In the present study, two GBM cell lines (U-138 and U-251) were infected with ZIKV at different multiplicities of infection (0.1, 0.01 and 0.001), and cell viability, migration, adhesion, induction of apoptosis, interleukin levels and CD14/CD73 cell surface marker expression were analyzed. The present study demonstrated that ZIKV infection promoted loss of cell viability and increased apoptosis in U-138 cells, as measured by MTT and triplex assay, respectively. Changes in cell migration, as determined by wound healing assay, were not observed; however, the GBM cell lines exhibited an increase in cell adhesion when compared with non-tumoral cells (Vero). The Luminex immunoassay showed a significant increase in the expression levels of IL-4 specifically in U-251 cells (MOI 0.001) following exposure to ZIKV. There was no significant change in the expression levels of IFN-γ upon ZIKV infection in the cell lines tested. Furthermore, a marked increase in the percentage of cells expressing the CD14 surface marker was observed in both GBM cell lines compared with in Vero cells; and significantly increased CD73 expression was observed particularly in U-251 cells, when compared with uninfected cells. These findings indicate that ZIKV infection could lead to reduced cell viability, elevated CD73 expression, improved cellular adherence, and higher rates of apoptosis in glioblastoma cells. Further studies are required to explore the potential use of ZIKV in the treatment of GBM.

2.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 521-534, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37480487

RESUMEN

The danger of ionizing radiation exposure to human health is a concern. Since its wide use in medicine and industry, the development of radioprotectors has been very significant. Adenosine exerts anti-inflammatory actions and promotes tissue protection and repair, by activating the P1 receptors (A1, A2A, A2B, and A3). Zebrafish (Danio rerio) is an appropriate tool in the fields of toxicology and pharmacology, including the evaluation of radiobiological outcomes and in the search for radioprotector agents. This study aims to evaluate the effect of adenosine in the toxicity induced by radiation in zebrafish. Embryos were treated with 1, 10, or 100 µM adenosine, 30 min before the exposure to 15 Gy of gamma radiation. Adenosine potentiated the effects of radiation in heart rate, body length, and pericardial edema. We evaluated oxidative stress, tissue remodeling and inflammatory. It was seen that 100 µM adenosine reversed the inflammation induced by radiation, and that A2A2 and A2B receptors are involved in these anti-inflammatory effects. Our results indicate that P1R activation could be a promising pharmacological strategy for radioprotection.


Asunto(s)
Adenosina , Pez Cebra , Humanos , Animales , Adenosina/farmacología , Rayos gamma/efectos adversos , Frecuencia Cardíaca , Antiinflamatorios
3.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38004484

RESUMEN

Prostate cancer (PC) is the most diagnosed tumor in males and ranks as the second leading cause of male mortality in the western world. The CD39 and CD73 enzymes play a crucial role in cancer regulation by degrading nucleotides and forming nucleosides. This study aimed to investigate the expression of the CD39 and CD73 enzymes as potential therapeutic targets for PC. The initial part of this study retrospectively analyzed tissue samples from 23 PC patients. Using the TissueFAXSTM cytometry platform, we found significantly higher levels of CD39-labeling its intensity compared to CD73. Additionally, we observed a correlation between the Gleason score and the intensity of CD39 expression. In the prospective arm, blood samples were collected from 25 patients at the time of diagnosis and after six months of treatment to determine the expression of CD39 and CD73 in the serum extracellular vesicles (EVs) and to analyze nucleotide hydrolysis. Notably, the expression of CD39 in the EVs was significantly increased compared to the CD73 and/or combined CD39/CD73 expression levels at initial collection. Furthermore, our results demonstrated positive correlations between ADP hydrolysis and the transurethral resection and Gleason score. Understanding the role of ectonucleotidases is crucial for identifying new biomarkers in PC.

4.
Purinergic Signal ; 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37906424

RESUMEN

Bladder cancer (BC) is the most common cancer of the urinary tract. Bozepinib (BZP), a purine-derived molecule, is a potential compound for the treatment of cancer. Purinergic signaling consists of the activity of nucleosides and nucleotides present in the extracellular environment, modulating a variety of biological actions. In cancer, this signaling is mainly controlled by the enzymatic cascade involving the NTPDase/E-NPP family and ecto-5'-nucleotidase/CD73, which hydrolyze extracellular adenosine triphosphate (ATP) to adenosine (ADO). The aim of this work is to evaluate the activity of BZP in the purinergic system in BC cell lines and to compare its in vitro antitumor activity with cisplatin, a chemotherapeutic drug widely used in the treatment of BC. In this study, two different BC cell lines, grade 1 RT4 and the more aggressive grade 3 T24, were used along with a human fibroblast cell line MRC-5, a cell used to predict the selectivity index (SI). BZP shows strong antitumor activity, with notable IC50 values (8.7 ± 0.9 µM for RT4; 6.7 ± 0.7 µM for T24), far from the SI for cisplatin (SI for BZP: 19.7 and 25.7 for RT4 and T24, respectively; SI for cisplatin: 1.7 for T24). BZP arrests T24 cells in the G2/M phase of the cell cycle, inducing early apoptosis. Moreover, BZP increases ATP and ADP hydrolysis and gene/protein expression of the NPP1 enzyme in the T24 cell line. In conclusion, BZP shows superior activity compared to cisplatin against BC cell lines in vitro.

5.
Front Pharmacol ; 13: 975197, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36299892

RESUMEN

Gliomas are extremely debilitating malignant brain tumors with very limited response to therapies. The initiation and progression of gliomas can be attributed to several molecular abnormalities, such as mutations in important regulatory networks. In this regard, the mitogen-activated protein kinases (MAPKs) arise as key signaling pathways involved in cell proliferation, survival, and differentiation. MAPK pathway has been altered in most glial tumors. In glioma cells, the activation of p38 MAPK contributes to tumor invasion and metastasis and is positively correlated with tumor grade, being considered a potential oncogenic factor contributing to brain tumorigenesis and chemotherapy resistance. Hence, a better understanding of glioma pathogenesis is essential to the advancement of therapies that provide extended life expectancy for glioma patients. This review aims to explore the role of the p38 MAPK pathway in the genesis and progression of malignant brain tumors.

6.
Purinergic Signal ; 18(4): 481-494, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35939198

RESUMEN

Glioblastoma (GBM) is the most aggressive and lethal among the primary brain tumors, with a low survival rate and resistance to radio and chemotherapy. The P2Y12 is an adenosine diphosphate (ADP) purinergic chemoreceptor, found mainly in platelets. In cancer cells, its activation has been described to induce proliferation and metastasis. Bearing in mind the need to find new treatments for GBM, this study aimed to investigate the role of the P2Y12R in the proliferation and migration of GBM cells, as well as to evaluate the expression of this receptor in patients' data obtained from the TCGA data bank. Here, we used the P2Y12R antagonist, ticagrelor, which belongs to the antiplatelet agent's class. The different GBM cells (cell line and patient-derived cells) were treated with ticagrelor, with the agonist, ADP, or both, and the effects on cell proliferation, colony formation, ADP hydrolysis, cell cycle and death, migration, and cell adhesion were analyzed. The results showed that ticagrelor decreased the viability and the proliferation of GBM cells. P2Y12R antagonism also reduced colony formation and migration potentials, with alterations on the expression of metalloproteinases, and induced autophagy in GBM cells. Changes were observed at the cell cycle level, and only the U251 cell line showed a significant reduction in the ADP hydrolysis profile. TCGA data analysis showed a higher expression of P2Y12R in gliomas samples when compared to the other tumors. These data demonstrate the importance of the P2Y12 receptor in gliomas development and reinforce its potential as a pharmacological target for glioma treatment.


Asunto(s)
Glioblastoma , Humanos , Ticagrelor/metabolismo , Ticagrelor/farmacología , Adenosina Difosfato/metabolismo , Glioblastoma/tratamiento farmacológico , Plaquetas , Autofagia , Proliferación Celular , Receptores Purinérgicos P2Y12/metabolismo , Antagonistas del Receptor Purinérgico P2Y/metabolismo
7.
Mol Cell Biochem ; 477(8): 2047-2057, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35429327

RESUMEN

As alterations in purinergic signaling have been observed in bladder diseases, we aimed to assess the potential prognostic role of purinergic receptors in bladder cancer in a translational approach based on clinical databases and in vitro data. The prognostic role of purinergic receptors in the survival of patients with bladder cancer and the expression profile of the altered P2 receptors in normal and in tumor samples were determined using The Cancer Genome Atlas databank. In T24 and RT4 human bladder cancer cell lines, the P2 purinergic receptors were characterized by RT-PCR and RT-qPCR analysis including radiotherapy exposure as treatment. The cell number and the cumulative population doubling were also assessed. The expression profile of P2X6 receptor in the cancer pathological stage and in the nodal metastasis status was in agreement with Kaplan-Meier analysis, indicating that high expression of this receptor was related to an increased survival rate in patients with bladder cancer. Of all the P2 receptors expressed on T24 cell line, P2X6 presented high expression after radiotherapy, while it was not altered in RT4 cells. In addition, irradiation promoted a decrease of T24 cell number, but did not change the cell number of RT4 after the same time and radiation dose. Along 7 days after irradiation exposure, both cells regrew. However, while P2X6 receptor was downregulated in T24 cells, it was upregulated in RT4 cells. Our findings indicated that high P2X6 receptor expression induced by radiation in T24 cell line may predict a good survival prognostic factor.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Línea Celular Tumoral , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Transducción de Señal , Neoplasias de la Vejiga Urinaria/patología
8.
Behav Brain Res ; 423: 113786, 2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-35124136

RESUMEN

The zebrafish has been considered an ideal model for studies of complex behaviors since its behavioral repertoire is well described. Therefore, this study evaluated the perceived pain through behavioral changes in zebrafish larvae. Here we investigated the Acetic Acid (AA) effects on zebrafish larvae exposed in a short-time period (60 s) and the preventive effect from routinely used compounds, Dimethyl Sulfoxide (DMSO), Ethanol (EtOH), Ibuprofen (IBP), and Paracetamol (PAR). In addition, the effect of P2×7 antagonist, A740003, and pannexin channel 1 (PANX-1) inhibitor Probenecid (PROB) on AA-induced behavioral changes were evaluated. AA impaired the distance covered, acceleration, movement, and latency to the first entry in the center from 5 dpf exposed larvae. At 0.050% AA, PAR prevented alterations from the distance covered, acceleration, and movement. Surprisingly, 0.3% DMSO prevented behavioral changes induced by AA. However, the effects from 0.2% DMSO were not prominent. We used 0.2% DMSO as a PROB diluent. PROB prevented the changes in distance and movement observed at both AA concentrations (0.0025% and 0.05%) tested. Since EtOH had no analgesic properties, we used it as an A740003 vehicle to observe the analgesic effects of this compound. As noted, A740003 did not prevent the behavioral changes in the AA-induced pain model. In contrast, 0.2% DMSO and PROB prevented AA-induced behavioral changes. These data enforce that zebrafish could be used in translational studies since this species has behavioral responses related to pain in the early stages of development and responses to analgesics similar to observed in mammals.


Asunto(s)
Analgésicos/farmacología , Conducta Animal/efectos de los fármacos , Conexinas , Dimetilsulfóxido/farmacología , Dolor , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X7 , Proteínas de Pez Cebra , Animales , Conexinas/antagonistas & inhibidores , Conexinas/metabolismo , Modelos Animales de Enfermedad , Larva , Dolor/tratamiento farmacológico , Dolor/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Pez Cebra , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/metabolismo
9.
Biochem Biophys Res Commun ; 601: 24-30, 2022 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-35220010

RESUMEN

Glioblastoma (GBM) is the most lethal among malignant gliomas. The tumor invasiveness and therapy-resistance are important clinical hallmarks. Growing evidence emphasizes the purinergic signaling contributing to tumor growth. Here we exposed a potential role of extracellular ATPase activity as a key regulator of temozolomide cytotoxicity and the migration process in GBM cells. The inhibition of ATP hydrolysis was able to improve the impact of temozolomide, causing arrest mainly in S and G2 phases of the cell cycle, leading M059J and U251 cells to apoptosis. In addition to eradicating GBM cells, ATP hydrolysis exhibited a potential to modulate the invasive phenotype and the expression of proteins involved in cell migration and epithelial-to-mesenchymal-like transition in a 3D culture model. Finally, we suggest the ATPase activity as a key target to decline temozolomide resistance and the migratory phenotype in GBM cells.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/farmacología , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos , Glioblastoma/patología , Humanos , Hidrólisis , Fenotipo , Temozolomida/farmacología , Temozolomida/uso terapéutico
10.
Molecules ; 26(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34684726

RESUMEN

Gliomas are the most common malignant brain tumors in adults, characterized by a high proliferation and invasion. The tumor microenvironment is rich in growth-promoting signals and immunomodulatory pathways, which increase the tumor's aggressiveness. In response to hypoxia and glioma therapy, the amounts of adenosine triphosphate (ATP) and adenosine diphosphate (ADP) strongly increase in the extracellular space, and the purinergic signaling is triggered by nucleotides' interaction in P2 receptors. Several cell types are present in the tumor microenvironment and can facilitate tumor growth. In fact, tumor cells can activate platelets by the ADP-P2Y12 engagement, which plays an essential role in the cancer context, protecting tumors from the immune attack and providing molecules that contribute to the growth and maintenance of a rich environment to sustain the protumor cycle. Besides platelets, the P2Y12 receptor is expressed by some tumors, such as renal carcinoma, colon carcinoma, and gliomas, being related to tumor progression. In this context, this review aims to depict the glioma microenvironment, focusing on the relationship between platelets and tumor malignancy.


Asunto(s)
Glioma/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Receptores Purinérgicos P2Y12/fisiología , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Plaquetas/metabolismo , Neoplasias Encefálicas/metabolismo , Glioma/fisiopatología , Humanos , Receptores Purinérgicos/metabolismo , Transducción de Señal/fisiología , Microambiente Tumoral/fisiología
11.
Micron ; 151: 103152, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34607251

RESUMEN

Quercetin is a flavonoid found in a great variety of foods such as vegetables and fruits. This compound has been shown to inhibit the proliferation of various types of cancer cells, as well as the growth of tumors in animal models. In the present study, we analyze morphological and mechanical changes produced by quercetin in T24 bladder cancer cells. Decreased cell viability and cell number were observed following quercetin treatment at 40 µM and 60 µM, respectively, as observed by the MTT assay and trypan blue exclusion test, supporting the hypothesis of quercetin anticancer effect. These assays also allowed us to determine the 40, 60, and 80 µM quercetin concentrations for the following analyses, Lactate Dehydrogenase assay (LDH); Nuclear Morphometric Analysis (NMA); and atomic force microscopy (AFM). The LDH assay showed no cytotoxic effect of quercetin on T24 cancer cells. The AFM showed morphological changes following quercetin treatment, namely decreased cell body, cytoplasmic retraction, and membrane condensation. Following quercetin treatment, the NMA evidenced an increased percentage of nuclei characteristic to the apoptotic and senescence processes. Cells also presented biophysical alterations consistent with cell death by apoptosis, as increased roughness and aggregation of membrane proteins, in a dose-dependent manner. Cellular elasticity, obtained through force curves, showed increased stiffness after quercetin treatment. Data presented herein demonstrate, for the first time, in a quantitative and qualitative form, the morphological and mechanical alterations induced by quercetin on bladder cancer cells.


Asunto(s)
Quercetina , Neoplasias de la Vejiga Urinaria , Animales , Apoptosis , Línea Celular Tumoral , Supervivencia Celular , Humanos , Quercetina/farmacología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico
12.
Enzyme Microb Technol ; 150: 109889, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34489042

RESUMEN

Hybrid nanoparticles composed of different biopolymers for delivery of enzyme/prodrug systems are of interest for cancer therapy. Hyaluronic acid-coated chitosan nanoparticles (CS/HA NP) were prepared to encapsulate individually an enzyme/pro-drug complex based on horseradish peroxidase (HRP) and indole-3-acetic acid (IAA). CS/HA NP showed size around 158 nm and increase to 170 and 200 nm after IAA and HRP encapsulation, respectively. Nanoparticles showed positive zeta potential values (between +20.36 mV and +24.40 mV) and higher encapsulation efficiencies for both nanoparticles (up to 90 %) were obtained. Electron microscopy indicated the formation of spherical particles with smooth surface characteristic. Physicochemical and thermal characterizations suggest the encapsulation of HRP and IAA. Kinetic parameters for encapsulated HRP were similar to those of the free enzyme. IAA-CS/HA NP showed a bimodal release profile of IAA with a high initial release (72 %) followed by a slow-release pattern. The combination of HRP-CS/HA NP and IAA- CS/HA NP reduced by 88 % the cell viability of human bladder carcinoma cell line (T24) in the concentrations 0.5 mM of pro-drug and 1.2 µg/mL of the enzyme after 24 h.


Asunto(s)
Quitosano , Nanopartículas , Profármacos , Neoplasias de la Vejiga Urinaria , Peroxidasa de Rábano Silvestre , Humanos , Ácido Hialurónico , Ácidos Indolacéticos
13.
Mol Cell Biochem ; 476(10): 3719-3727, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34089473

RESUMEN

Adenine nucleotides are important signaling molecules that mediate biological functions in many conditions, including cancer. The enzymes CD39 and CD73 produce adenosine in the extracellular milieu that has a very important role in tumor development. This study aimed to evaluate nucleotide hydrolysis in the plasma blood of breast cancer elderly patients. In this prospective cohort study, we investigated the ectonucleotidases activity in breast cancer elderly patients, at the moment of diagnosis and after treatment. Control group consisted of elderly women without cancer diagnostic. The nucleotide hydrolysis assay was performed by the malachite green method and used ATP, ADP, or AMP as substrates. Paired t test or Wilcoxon rank-sum test was used. Our data showed that breast cancer patients presented high levels of ATP and AMP hydrolyses when compared to control group at the moment of diagnosis. When analyzing the differences between the samples at the time of diagnostic and 6 months after treatment, we observed a significant reduction on CD73 activity after all treatments used: surgery, chemotherapy, radiotherapy, or hormone therapy. The results with APCP, a specific CD73 inhibitor, showed that the AMP hydrolysis was inhibited in all conditions evaluated. We observed a diminished ADPase activity in the patients without metastasis when compared to metastatic breast cancer patients. The results showed that AMP hydrolysis was reduced in the blood plasma of breast cancer elderly patients after different treatments. This study strengthens the potential role of CD73 enzyme as a biomarker for breast cancer treatment response.


Asunto(s)
5'-Nucleotidasa/sangre , Adenosina Monofosfato/sangre , Biomarcadores de Tumor/sangre , Neoplasias de la Mama/sangre , Proteínas de Neoplasias/sangre , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Proteínas Ligadas a GPI/sangre , Humanos , Hidrólisis , Persona de Mediana Edad
14.
Mater Sci Eng C Mater Biol Appl ; 124: 112089, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33947529

RESUMEN

Indole-3-carbinol (I3C) is a plant molecule known to be active against several types of cancer, but some chemical characteristics limit its clinical applications. In order to overcome these limitations, polymeric nanoparticles can be used as carrier systems for targeted delivery of I3C. In this study, chitosan and chitosan/polyethylene glycol nanoparticles (CS NP and CS/PEG NP, respectively) were prepared to encapsulate I3C by ionic gelation method. The polymeric nanoparticles were characterized by Dynamic Scattering Light (DLS), Zeta Potential (ZP), Fourier Transform Infrared (FTIR) spetroscopy, X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and Field Emission Gun Scanning Electron Microscopy (FEG-SEM). I3C release testing was performed at an acidic media and the interactions between I3C and chitosan or PEG were evaluated by Density Functional Theory (DFT). Cytotoxicity of nanoparticles in bladder cancer T24 cell line was evaluated by the Methyl-thiazolyl-tetrazolium (MTT) colorimetric assay. The average size of the nanoparticles was observed to be in the range from 133.3 ± 3.7 nm to 180.4 ± 2.7 nm with a relatively homogeneous distribution. Samples had relatively high positive zeta potential values (between +20.3 ± 0.5 mV and + 24.3 ± 0.5 mV). Similar encapsulation efficiencies (about 80%) for both nanoparticles were obtained. Physicochemical and thermal characterizations pointed to the encapsulation of I3c. electron microscopy showed spherical particles with smooth or ragged surface characteristics, depending on the presence of PEG. The mathematical fitting of the release profile demonstrated that I3C-CS NP followed the Higuchi model whereas I3C-CS/PEG NP the Korsmeyer-Peppas model. Chemical differences between the nanoparticles as based on the I3C/CS or I3C/PEG interactions were demonstrate by computational characterization. The assessment of cell viability by the MTT test showed that the presence of both free I3C and I3C-loaded nanoparticles lead to statistically significant reduction in T24 cells viability in the concentrations from 500 to 2000 µM, when comparison to the control group after 24 h of exposure. Thus, CS and CS/PEG nanoparticles present as feasible I3C carrier systems for cancer therapy.


Asunto(s)
Quitosano , Nanopartículas , Neoplasias de la Vejiga Urinaria , Portadores de Fármacos , Humanos , Indoles , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier
15.
Mater Sci Eng C Mater Biol Appl ; 110: 110662, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32204090

RESUMEN

Interest in nanostructures such as titanate nanotubes (TNT) has grown notably in recent years due to their biocompatibility and economic viability, making them promising for application in the biomedical field. Quercetin (Qc) has shown great potential as a chemopreventive agent and has been widely studied for the treatment of diseases such as bladder cancer. Motivated by the possibilities of developing a new hybrid nanostructure with potential in biomedical applications, this study aimed to investigate the incorporation of quercetin in sodium (NaTNT) and zinc (ZnTNT) titanate nanotubes, and characterize the nanostructures formed. Qc release testing was also performed and cytotoxicity in Vero and T24 cell lines evaluated by the MTT assay. The effect of TNTs on T24 bladder cancer cell radiosensitivity was also assessed, using cell proliferation and a clonogenic assay. The TNT nanostructures were synthesized and characterized by FESEM, EDS, TEM, FTIR, XRD and TGA. The results showed that the nanostructures have a tubular structure and that the exchange of Na+ ions for Zn2+ and incorporation of quercetin did not alter this morphology. In addition, interaction between Zn and Qc increased the thermal stability of the nanostructures. The release test showed that maximum Qc delivery occurred after 24 h and the presence of Zn controlled its release. Biological assays indicated that the NaTNTQc and ZnTNTQc nanostructures decreased the viability of T24 cells after 48 h at high concentrations. Furthermore, the clonogenic assay showed that NaTNT, NaTNTQc, ZnTNT and ZnTNTQc combined with 5 Gy reduced the formation of polyclonal colonies of T24 cells after 48 h. The results suggest that the nanostructures synthesized in this study interfere in cell proliferation and can therefore be a powerful tool in the treatment of bladder cancer.


Asunto(s)
Materiales Biocompatibles Revestidos/farmacología , Nanotubos/química , Quercetina/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Titanio/farmacología , Neoplasias de la Vejiga Urinaria/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Liberación de Fármacos , Humanos , Nanotubos/ultraestructura , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría
16.
Front Oncol ; 10: 617385, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33659213

RESUMEN

Glioblastoma is the most malignant and lethal subtype of glioma. Despite progress in therapeutic approaches, issues with the tumor immune landscape persist. Multiple immunosuppression pathways coexist in the tumor microenvironment, which can determine tumor progression and therapy outcomes. Research in immune checkpoints, such as the PD-1/PD-L1 axis, has renewed the interest in immune-based cancer therapies due to their ability to prevent immunosuppression against tumors. However, PD-1/PD-L1 blockage is not completely effective, as some patients remain unresponsive to such treatment. The production of adenosine is a major obstacle for the efficacy of immune therapies and is a key source of innate or adaptive resistance. In general, adenosine promotes the pro-tumor immune response, dictates the profile of suppressive immune cells, modulates the release of anti-inflammatory cytokines, and induces the expression of alternative immune checkpoint molecules, such as PD-1, thus maintaining a loop of immunosuppression. In this context, this review aims to depict the complexity of the immunosuppression in glioma microenvironment. We primarily consider the PD-1/PD-L1 axis and adenosine pathway, which may be critical points of resistance and potential targets for tumor treatment strategies.

17.
Artículo en Inglés | MEDLINE | ID: mdl-31306805

RESUMEN

Adenosine is a nucleoside that acts as a signaling molecule by activating P1 purinergic receptors (A1, A2A, A2B and A3). This activation is involved in immune responses, inflammation, and tissue remodeling and tumor progression. Gamma rays are a type of ionizing radiation widely adopted in radiotherapy of tumors. Although it brings benefits to the success of the therapeutic scheme, it can trigger cellular damages, inducing a perpetual inflammatory response that culminates in adverse effects and severe toxicity. Our study aims to characterize the adenosinergic system in a zebrafish embryo radiotherapy model, relating the adenosine signaling to the changes elicited by radiation exposure. To standardize the radiotherapy procedure, we established a toxicological profile after exposure. Zebrafish were irradiated with different doses of gamma rays (2, 5, 10, 15 and 20 Gy) at 24 hpf. Survival, hatching rate, heartbeats, locomotor activity and morphological changes were determined during embryos development. Although without significant difference in survival, gamma-irradiated embryos had their heartbeats increased and presented decreased hatching time, changes in locomotor activity and important morphological alterations. The exposure to 10 Gy disrupted the ecto-5'-nucleotidase/CD73 and adenosine deaminase/ADA enzymatic activity, impairing adenosine metabolism. We also demonstrated that radiation decreased A2B receptor gene expression, suggesting the involvement of extracellular adenosine in the changes prompted by radiotherapy. Our results indicate that the components of the adenosinergic system may be potential targets to improve radiotherapy and manage the tissue damage and toxicity of ionizing radiation.


Asunto(s)
Adenosina/metabolismo , Desarrollo Embrionario/efectos de la radiación , Radioterapia/efectos adversos , Receptores Purinérgicos P1/metabolismo , Pez Cebra , Animales , Relación Dosis-Respuesta en la Radiación , Rayos gamma , Expresión Génica/efectos de la radiación , Modelos Animales , Pez Cebra/embriología , Pez Cebra/metabolismo
18.
Purinergic Signal ; 15(1): 95-105, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30644036

RESUMEN

Prostate cancer is among the major malignancies that affect men around the world. Adenine nucleotides are important signaling molecules that mediate innumerous biological functions in pathophysiological conditions, including cancer. These molecules are degraded by several ectoenzymes named ectonucleotidases that produce adenosine in the extracellular medium. Some of these ecto-enzymes can be found in soluble in the blood stream. Thus, the present study aimed to evaluate the hydrolysis of adenine nucleotides (ATP, ADP, and AMP) in the plasma blood of patients with prostate cancer. Peripheral blood samples were collected, and questionnaires were filled based on the clinical data of the medical records. The nucleotide hydrolysis was performed by Malachite Green method using ATP, ADP, and AMP as substrates. Plasma from prostate cancer patients presented an elevated hydrolysis of all nucleotides evaluated when compared to healthy individuals. NTPDase inhibitor (ARL67156) and the alkaline phosphatase inhibitor (levamisole) did not alter ATP hydrolysis. However, AMP hydrolysis was reduced by the CD73 inhibitor, APCP, and by levamisole, suggesting the action of a soluble form of CD73 and alkaline phosphatase. On microvesicles, it was observed that there was a low expression and activity of CD39 and almost absent of CD73. The correlation of ATP, ADP, and AMP hydrolysis with clinic pathological data demonstrated that patients who received radiotherapy showed a higher AMP hydrolysis than those who did not, and patients with lower clinical stage (CS-IIA) presented an elevated ATP hydrolysis when compared to those with more advanced clinical stages (CS-IIB and CS-III). Patients of all clinical stages presented an elevated AMPase activity. Therefore, we can suggest that the nucleotide hydrolysis might be attributed to soluble ecto-enzymes present in the plasma, which, in a coordinate manner, produce adenosine in the blood stream, favoring prostate cancer progression.


Asunto(s)
Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Biomarcadores de Tumor/sangre , Neoplasias de la Próstata/sangre , Anciano , Anciano de 80 o más Años , Detección Precoz del Cáncer/métodos , Humanos , Hidrólisis , Masculino , Persona de Mediana Edad , Neoplasias de la Próstata/patología
19.
J Cancer Res Clin Oncol ; 144(3): 469-482, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29305710

RESUMEN

PURPOSE: Trimodal therapy is a reasonable bladder-preserving option to radical cystectomy. However, many tumors are radioresistive. In this sense, the identification of new prognostic and predictive biomarkers that allow the selection of patients with better responses to radiation therapy would improve outcomes. With the aim of using ecto-5'-nucleotidase/CD73 as a predictive biomarker, the role of this enzyme in the context of radiotherapy in T24 human bladder cancer cell line was investigated. METHODS: T24 cell line was exposure to a single dose of radiation (4 Gray) and trypan blue assay (pharmacological assays of viability/cumulative population doubling), flow cytometry (cell cycle/cell death/active caspase-3/ecto-5'-nucleotidase/CD73 protein staining), DAPI staining (nuclear morphometric assay), RT-PCR and real-time PCR, malachite green method (ectonucleotidase enzymatic assay), and HPLC (analysis of AMP metabolism) were carried out. T24 cell line in which ecto-5'-nucleotidase/CD73 has been completely silenced (5'KO) was also used. RESULTS: The exposure of T24 cell line to a single dose (4 Gray) of radiation-induced cell death and triggered a transitory increase in ecto-5'-nucleotidase/CD73 expression, increased ectonucleotidase activity, and led to adenosine and inosine accumulation in the extracellular medium. Pharmacological inhibition or knocking out ecto-5'-nucleotidase/CD73 rescued cells' proliferative capacity, reducing their sensitivity to radiation. CONCLUSION: Our findings show that the induction of ecto-5'-nucleotidase/CD73 by radiation contributes to the radiosensitivity of T24 cell line.


Asunto(s)
5'-Nucleotidasa/fisiología , Tolerancia a Radiación/genética , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/radioterapia , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Proliferación Celular/efectos de la radiación , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Proteínas Ligadas a GPI/fisiología , Regulación Enzimológica de la Expresión Génica/efectos de la radiación , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Técnicas de Silenciamiento del Gen , Humanos , Dosis de Radiación , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo
20.
Toxicon ; 129: 58-67, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28202361

RESUMEN

This study investigated the effects of P/Q- and N-type voltage-gated calcium channel (VGCC) blockers derived from P. nigriventer in glioma progression, by means of in vitro and in vivo experiments. Glioma cells M059J, U-138MG and U-251MG were used to evaluate the antiproliferative effects of P/Q- and N-type VGCC inhibitors PhTx3-3 and Phα1ß from P. nigriventer (0.3-100 pM), in comparison to MVIIC and MVIIA from C. magus (0.3-100 pM), respectively. The toxins were also analyzed in a glioma model induced by implantation of GL261 mouse cells. PhTx3-3, Phα1ß and MVIIA displayed significant inhibitory effects on the proliferation and viability of all tested glioma cell lines, and evoked cell death mainly with apoptosis characteristics, as indicated by Annexin V/propidium iodide (PI) positivity. The antiproliferative effects of toxins were confirmed by flow cytometry using Ki67 staining. None of the tested toxins altered the proliferation rates of the N9 non-tumor glial cell line. Noteworthy, the administration of the preferential N-type VGCC inhibitors, Phα1ß (50 pmol/site; i.c.v.), its recombinant form CTK 01512-2 (50 pmol/site; i.c.v. and i.t.), or MVIIA (10 pmol/site; i.c.v.) caused significant reductions of tumor areas in vivo. N-type VGCC inhibition by Phα1ß, CTK 01512-2, and MVIIA led to a marked increase of GFAP-activated astrocytes, and Iba-1-positive microglia, in the peritumoral region, which might explain, at least in part, the inhibitory effects of the toxins in tumor development. This study provides novel evidence on the potential effects of P. nigriventer-derived P/Q-, and mainly, N-type VGCC inhibitors, in glioma progression.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Neuropéptidos/farmacología , Venenos de Araña/farmacología , Arañas/química , Animales , Canales de Calcio Tipo N/efectos de los fármacos , Canales de Calcio Tipo N/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Glioma/tratamiento farmacológico , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...